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I consider electrodynamics and the problem of knotted solitons in two-component superconductors. Possible
existence of knotted solitons in multicomponent superconductors was predicted several years ago. However,
their basic properties and stability in these systems remain an outstandingly difficult question both for analyti-
cal and numerical treatment. Here I propose a special perturbative approach to treat self-consistently all the
degrees of freedom in the problem. I show that there exists a length scale for a Hopfion texture where the
electrodynamics of a two-component superconductor is dominated by a self-induced Faddeev term, which is in
stark contrast to the Meissner electrodynamics of single-component systems. I also show that at certain short
length scales knotted solitons in the two-component Ginzburg-Landau model are not described by a Faddeev-
Skyrme-type model and are unstable. However, these solitons can be stable at some intermediate length scales.
I argue that configurations with high topological charge may be more stable in these systems than low-charge
configurations. In the second part of the paper I discuss qualitatively different physics of the stability of knotted
solitons in a more general Ginzburg-Landau model and point out the physically relevant terms which enhance
or suppress the stability of knotted solitons. With this argument it is demonstrated that Ginzburg-Landau
models possess stable knotted solitons.
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Quintessential and unusual properties of a quantum fluid
consisting of a large number of particles can be described at
macroscopic length scales by a simple complex scalar field
��r�, or in the case of a multicomponent quantum fluid by a
multiplet of complex fields �i�r� , i=1,2 , . . . ,N. The fact
that this simple description is possible implies that the flow
of the macroscopically large number of particles comprising
a quantum fluid is severely constrained. The constraint in
question is the superflow quantization condition which origi-
nates from the single valuedness of the complex fields �i�r�.
In a physical situation where there is a superflow locally in
space this flow should satisfy the single-valuedness condition
of the condensate wave function. Thus it can be created by
exciting vortex loops with quantized superfluid velocity cir-
culation, or magnetic flux. Consequently many key proper-
ties of quantum fluids depend dramatically on properties of
the vortex loops. In presently known and well investigated
superfluids and superconductors the main characteristic
which vortex loops have in common is the fact that their
energies depend monotonically on the loop sizes. Indeed, this
fact is very important for physics of how a quantum fluid
restores symmetry �via entropy-driven proliferation of vortex
loops�, reacts to a quench �via a relaxation of quench-
induced vortex loops� for physics of superfluid turbulence,
etc. All these properties would be quite dramatically altered
if some quantum fluid would allow vortex loops with non-
monotonic energy dependence on the loop size �i.e., if the
energy of the vortex loop would grow not only if the vortex
loop expands but also if it shrinks below some characteristic
size�. In these cases quench-induced defects would be pro-
tected from decay by a potential barrier resulting in large-
scale remnant postquench vorticity. It may also produce
hysteretic behavior in entropy-generated topological defects
and thus change the order of the superconducting phase

transitions, etc. Essentially in many respects this would lead
to a different type of superfluid behavior, but the outstanding
question is whether any quantum fluids can, in principle,
support such defects. The model which is considered below
applies, with some modifications, to a large variety of mul-
ticomponent systems such as multicomponent electronic
condensates �e.g., two-band superconductors1�, physics of
the projected multicomponent quantum metallic fluid of hy-
drogen or its isotopes under high compression,2 similar situ-
ation may arise in spin-triplet superconductors,3 similar
model was also discussed in the context of neutron star
interior.4 Besides that in condensed-matter physics there is
much interest in systems where the SU�2� Ginzburg-Landau
functional appears as an effective model.5,6 It is indeed im-
portant to understand the basic properties of topological de-
fects in SU�2� superconductors in order to understand fluc-
tuations and critical behavior in these systems.

In Ref. 7 and also Refs. 3 and 4 it was conjectured that
some multicomponent superconductors may support defects
in the form of loops or knots in which energy would grow if
such a vortex shrinks. However, this energy scaling and the
question of stability of these defects in these systems turned
out to be extremely difficult, and in spite of multiple attempts
to solve the problem no conclusive results were found so far.
In this work I use a different approach to show that, indeed,
in certain cases, condensed-matter systems should allow to-
pological defects endowed with such properties.

The question of the existence of topological solitons in
the form of loops or knotted loops in which energy is a
nonmonotonic function of size was first raised in mathemati-
cal physics several decades ago.8 Faddeev proposed a model
consisting of a three-component unit vector n� = �n1 ,n2 ,n3�,
�n� �=1:
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F =� d3r�1

2
��n� �2 + c2��kijn� · �in� � � jn� �2� , �1�

where �kij is the Levi-Civita symbol. This model supports
topological defects in the form of closed or knotted loops
�called knotted solitons� characterized by a nontrivial Hopf
invariant.8 For such a defect in Eq. �1�, one can expect the
energy coming from the first term �second order in deriva-
tives integrated over the space� to scale as �r� while the
energy coming from the last term �which is fourth order in
derivatives� to scale as �1 /r�. For this reason it was argued
that for this soliton there is an energetically preferred length
scale set by the coefficient c.8–10 Numerically the solutions
for these defects were found only a decade ago by Faddeev
and Niemi, confirming that the energy of a knotted soliton9

has a global minimum at a certain length scale. This was
followed by a decade of highly nontrivial numerical and
mathematical studies which uncovered a number of ex-
tremely interesting properties of these defects11 �for movies
from numerical simulations by Hietarinta and Salo see Ref.
12�.

The outstanding question is whether such topological de-
fects can be found in condensed-matter systems. In this case
several principal problems with realizability of these solitons
can be immediately identified. First of all, the nonmonoto-
nicity of the energy originates in a competition between
second-order and fourth-order derivative terms in an energy
functional. In quantum fluids, the Ginzburg-Landau and
Gross-Pitaevskii energy functionals are effective models
where a second-order gradient term arises from microscopic
considerations via a derivative expansion. If one would try to
stabilize knotted solitons by obtaining higher-order terms in
a derivative expansion, the stabilization length would be
such that the second- and fourth-order terms would be of the
same order of magnitude as sixth order and higher terms.
Therefore the derivative expansion fails and no Ginzburg-
Landau description exists at this length scale. Thus for a
realization of the model such as Eq. �1�, the fourth-order
derivative term should have a nonperturbative origin. That
is, there should exist a regime where second- and fourth-
order terms have similar magnitude, at the same time being
much larger than any higher-order terms. In Ref. 7 it was
observed that the two-component Ginzburg-Landau �TCGL�
model can be mapped onto a model containing the terms of
�Eq. �1��. There, a fourth-order term in derivatives originates
nonperturbatively as a contribution to magnetic field energy
density. However, in contrast to Eq. �1�, the fourth-order
term is coupled to another field. The role of that complicated
coupling to the additional massive vector field was not
known. This question has also turned out to be very difficult
to address numerically because the studies of these solitons
in the TCGL model are very computationally demanding.
The numerical work, performed so far, explored a limited
range of parameters13 �see also the early work where, how-
ever, a dimensionality reducing axially symmetric ansatz was
used14�. These first numerical works did not find indications
of the overlap of properties of the TCGL model and the
Faddeev model �Eq. �1��, even though the results of model
�1� were recovered by introducing a constraint which

straightforwardly suppresses the additional massive vector
field. On the other hand, these simulations did not rule out
that there is a parameter range where knotted solitons are
stable in the TCGL model and the question remained open.
In this work I address this problem.

Let me briefly outline the mapping7 of the TCGL model
onto a model containing a version of Eq. �1�. In the simplest
form �used in Ref. 7� the TCGL energy density is

F = 	
n=1,2

1

2
��� + ieA��n�2 + V���n�� +

1

2
�� � A�2, �2�

where �n= ��n�ei�n are complex scalar fields which are
coupled by the gauge field A. The symmetry-breaking poten-
tial term V can be quite general. Its role, however, is quite
straightforward to evaluate. Since in what follows we will
focus on the most interesting processes where the magnetic
energy competes against the kinetic energy of superflow, the
potential term will be used in the simplest SU�2� form: V
=v���1�2+ ��2�2− �const�2�2 with a large coefficient v.

In conclusion I briefly comment on the cases of the effec-
tive potentials where the SU�2� symmetry is broken. The
equation for supercurrent which follows from Eq. �2� is

J =
1

2
ie	

n

��n � �n
� − �n

� � �n� + e2A��n�2. �3�

Let us introduce the following notations:

�2 = ��1�2 + ��2�2,

�n = ��n�ei�n,

��n� = ��n�/� ,

��1�2 = cos2
�

2
�, ��2�2 = sin2
�

2
�

C = J/�e�2� ,

j = i	
n

��n � �n
� − �n

� � �n� . �4�

Then we define the vector field

n� = �cos��1 − �2�sin �,cos��1 − �2�sin �,cos �� �5�

for which the following identity holds:7

1

2
�2����1�2 + ���2�2 −

1

2
j2 =

1

8
�2��n� �2. �6�

The kinetic and magnetic energy density terms of model �2�
then can be rewritten as7

F =
�2

8
��n� �2 +

�2

2
C2

+
1

2e2��kij
�iCj +
1

4
n� · �in� � � jn��2

. �7�

A knotted soliton in this model is defined as a texture of n�
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characterized by a nontrivial Hopf invariant. In the simplest
case it is a “vortex loop” which can be described as follows.
Consider a cross section of this loop. If at r→	 the value of
n� �r� is n�0��n1

0 ,n2
0 ,n3

0�, then in the center of this cross sec-
tion we have n� c�−n�0��−n1

0 ,−n2
0 ,−n3

0�. In what follows I
will call the point where n� c�−n�0��−n1

0 ,−n2
0 ,−n3

0� the
“core,” even though it does not have the same meaning as
the core of an Abrikosov vortex. Further, in this simplest
case if we follow some path around the core where n� �n�0

and n� �n� c a two-component vector l �defined as a projection
of n� to a plane perpendicular to n�0� winds N times along that
path. Besides that l winds M times along any closed paths in
the toroidal direction, i.e., along the core �that means that
this closed vortex is “prepared” by twisting a skyrmionlike
flux tube M times before gluing its ends�. Because of these
windings, for any value of n� one can identify one or several
closed helices in the physical space where n� =n�̃ �which is
called a preimage of n�̃ �. The winding N specifies the number
of these helices while the winding M specifies how many
steps these helices have. In the general case the vortex can
have the form of a closed knot. Then the preimages of n�̃ are
closed knotted helices. A schematic picture of a toroidal
knotted soliton is shown in Fig. 1.

Consider a toroidal knot with diameter much larger than
the penetration length 
�1 /e�. There is quantized magnetic
flux carried by this vortex. This follows from the following
argument. Consider a vortex loop with a diameter L�
.
Consider a path � which is much smaller than L such that it
goes once around the core at a distance much larger than 
.
Since we can choose such a path outside the texture where n�
has windings or varies appreciably, we have everywhere
along that path n� =n�0 �on the left side of Fig. 1 it would
correspond to a contour that is far enough from the core so
that along that contour, the vector n� does not deviate from
the value on equator in the order parameter space S2 and
pointing to the right�. From there it follows that along this

path ����=0 and �����1−�2�=0. Further if a cross section
of the flux tube is characterized by the winding number N, it
should contain N preimages of the north pole of S2 �defined
as a point in the cross section where �=0 and thus ��2�=0�
as well as N preimages of the south pole of S2 �defined as a
point in the cross section where �= and thus ��1�=0�. The
only proper mapping from Ginzburg-Landau variables �i ,A
to the variables � ,n� ,C should be supplemented by imposing
the condition that single valuedness of �n is preserved. This
condition is: along any path � in the physical space which
encircles N1 preimages of the north pole of S2 and N2 pre-
images of the south pole of S2 the conditions should hold
����1=2N1 and ����2=2N2. Note that to be consistent
with a Hopf map each of the phases should have a single 2
winding per zero of the order parameter ��n�, for all bound-
ary conditions, except the case where n� assumes positions
corresponding to the north or south pole on S2 at infinity and
in the core. Thus using the additional single-valuedness con-
ditions we have for the path �,

�
�

���1 − �2� = 0, �
�

���1 + �2� = 4N . �8�

This determines the magnetic flux enclosed by the flux tube,
as follows from the equations of motion �Eq. �3��:

� = �
�

dsA =
1

e2���1�2 + ��2�2�

��
�

ds�J −
ie

2 	
n

��n � �n
� − �n

� � �n�
�

1

e2���1�2 + ��2�2���

ds�−
ie

2 	
n

��n � �n
� − �n

� � �n�
= − �0N , �9�

FIG. 1. �Color online� A schematic picture of a toroidal knotted soliton �shown on the right�. Any cross section of the flux tube
�rectangular area, schematically shown in yellow� produces a skyrmionic texture of the three-component vector n� . The texture of n� , close to
the vortex center in the cross section, is shown on the left. The flux tube is twisted: the red helix schematically shows the preimage of the
north pole: i.e., where in physical space n� assumes the position corresponding to the “north pole” �i.e., n� = �0,0 ,1��.
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where �0= 2
e is the magnetic-flux quantum. Note that the

flux quantization of a topologically nontrivial texture of n�
appears only if model �7� is supplemented with the additional
conditions of single valuedness of the original phases �n.
Without these extra conditions model �7� allows topologi-
cally nontrivial textures of n� which do not carry magnetic
flux. It is thus an important circumstance that model �7� has
configurations which do not correspond to physical configu-
rations in Eq. �2�, therefore the proper mapping from Eq. �2�
to Eq. �7� should involve the constraint associated with the
implementation of the single-valuedness conditions on �n.
Note also that the texture carries one flux quantum per
couple of spatially separated zeros of �1 and �2, therefore a
knotted soliton can be interpreted as a special bound state of
twisted fractional flux vortices.1

The described above topological objects are always well
defined when ��0 at any point in that texture. The more
complicated question is how the energy of these defects
scales as a function of their sizes, i.e., if these defects can
minimize their energy by shrinking or if they will be pro-
tected from shrinking by an energy barrier. Let us return to
Eq. �7�. The last term is the most interesting here. It repre-
sents the magnetic field energy density which has the contri-
butions from the massive vector field C and also a Faddeev
term ��kijn� ·�in� �� jn� �2. It suggests that, if there are condi-
tions where the contribution from ��C is negligible, then
the magnetic field energy density in the TCGL model would
scale as a Faddeev term. However, at least in the limit e
→0, when B→0 one finds that �kij�iCj =− 1

4�kijn� ·�in� �� jn�
and the model is reduced to a Gross-Pitaevskii equation for
two decoupled fields without a self-generated Faddeev term.
Moreover, similar behavior has been seen in the recent nu-
merical studies13 of Eq. �2� for a range of parameters. This
raises the question of whether the electrodynamics of two-
component superconductors actually possess a self-generated
Faddeev term or if it is compensated by the field C making
scaling properties of vortex loops monotonic. Below I de-
velop an analytic treatment for the role of the field C to
answer this question.

Let me first observe that if there exists a regime where the
system tends to model �1� �i.e., where the field C plays a role
of small correction�, then a self-consistent perturbative
scheme for treating the field C is possible. The vector n�
indeed depends only on gauge-invariant quantities such as
the phase difference between the condensates and the relative
densities. Therefore one can always define a texture of n� , and
the accompanying configuration of the field C will be deter-
mined by a configuration of the vector potential correspond-
ing to the energy minimum of functional �2� for a given
texture of n� . Consider now a texture of n� corresponding to a
knotted soliton. Further, consider shrinking of that texture. In
this process the contribution from �kijn� ·�in� �� jn� in the en-
ergy functional will grow. The field C should assume then an
optimal configuration from the point of view of the energetic
balance between �i� the best possible compensation of the
�kijn� ·�in� �� jn� contribution in the last term in Eq. �7�, and
�ii� the accompanying energy penalty in the second term in
Eq. �7�. Observe now that if there exists a parameter regime
and a characteristic size of a knotted soliton where the self-
generated magnetic field consists primarily of the Faddeev

term contribution, Bk� 1
4e�kijn� ·�in� �� jn� , then a contribution

from the field C can be estimated perturbatively. Since it is
not a priori known if such a regime exists, the perturbative
scheme should be self-consistent. That is, the breakdown of
the self-consistency criterion should signal the violation of
the assumption. Such a self-consistent perturbative estimate
of the contribution from the field C can be made by using the
condition that the Maxwell equation J=��B should be sat-
isfied. First observe that from J=��B it follows that

C = 
2�� � � � C +
1

4
� � �kijn� · �in� � � jn�� �10�

and

� � C = 
2�� � � � � � C

+
1

4
� � � � ��kijn� · �in� � � jn� �� ,

where 
�1 /e�. By substituting this into the expression for
B2 and repeating the procedure iteratively, an expansion in
powers of 
 can be generated,

B2

2
�

1

32e2 ��kijn� · �in� � � jn�

+ 
2 � � � � ��kijn� · �in� � � jn� � + ¯�2. �11�

From applying a similar expansion also for the term
��2 /2�C2 with the help of Eq. �10� it follows that when 
 is
much smaller than the characteristic size L of the texture of n�
the dominant terms in the model are

F�L�
� �
�2

8
��n� �2 +

1

32e2 ��kijn� · �in� � � jn� �2. �12�

On the other hand, for L�
 the above self-consistent exclu-
sion of the field C fails, and in the limit L /
→0 one ap-
proaches the e=0 scaling where ��C�− 1

4n� ·�in� �� jn� , as
can be seen from the equation

C


2 = �� � � � C +
1

4
� � �kijn� · �in� � � jn��

→ 0�
 → 	� . �13�

From here a conclusion follows that a texture characterized
by a nontrivial Hopf charge in the TCGL model with size
much smaller than 
 can minimize its energy by shrinking. It
means that for a given Hopf charge a knot soliton in Eq. �2�
can represent at most a local energy minimum, while the
knotted solitons in the original Faddeev model always corre-
spond to a global minimum �see also Ref. 15�.

However, a knotted soliton texture which is much larger
than 
 should have energy scaling similar to that in model
�1�, i.e., receiving a contribution ��kijn� ·�in� �� jn� �2 in the en-
ergy density. Considering the case of the lowest Hopf charge
Q, energy functional �12� has stable solitons with character-
istic size given by the ratio between the second- and fourth-
order derivative terms which is L0=1 / �2e��= 1

2
; note, how-
ever, that the self-consistent procedure of excluding the field
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C, which was used to obtain Eq. �12�, breaks down at the
scales of order of 
 �where the energy of a knot texture is
affected significantly by the coupling to C�. The lack of
small parameters in this regime makes it difficult to estimate
energy scaling. However, it is possible that there is a finite
potential barrier at this length scale which can prevent a tex-
ture from shrinkage. The observation of the instability of
knotted solitons in the TCGL model in the recent numerical
studies13 may originate from the simulations being in the
parameter range of the monotonic scaling regime. This will
be the case if, for example, the initial texture is too small
compared to 
, or it can also result from 
 being too small
compared to the numerical grid spacing making the stabili-
zation length being too small to resolve on a numerical grid,
etc. Indeed, finding a finite potential barrier in numerical
simulations is a much harder task than the identification of
the infinite energy barrier in the original Faddeev model
�where a texture scales to the global minimum no matter
what the initial conditions are�. Finding a small potential
barrier with procedures like in Ref. 13 requires fine tuning of
the initial texture to be close enough to the one correspond-
ing to the local minimum.

Importantly, the above considerations are restricted to
solitons with lowest Hopf charges Q. However, one of the
most remarkable properties of model �1� is the existence of a
Vakulenko-Kapitanskii bound, which states that energy of a
soliton depends on the Hopf charge Q as E�const·c�Q�3/4.16

Because of the 3/4 power, solitons with high Hopf charge are
stable against decay into several solitons with lower Hopf
charge. Indeed, high-Q solitons have size which depends not
only on the length scale given by the ratio of the coefficients
in front of the second- and fourth-order terms in Eq. �7� but
also on Hopf charge. The textures should in general be larger
for larger Q �though there is no simple scaling because at
high Q solitons develop very complicated forms11�. It indi-
cates a possibility that in the case of a high Hopf charge,
knotted solitons in the TCGL model may have a local energy
minimum at the length scales larger than 
, and thus be
reasonably well described by effective model �12�.

The complicated nature of the energy scaling of the knot-
ted soliton texture in simplest GL model �2� is connected
with the fact that it has only one length scale 
. This scale
sets the ratio between second-order and fourth-order deriva-
tive terms in n� and at the same time it sets the inverse mass
for the vector field C. In general physical systems the TCGL
model includes other terms consistent with the symmetry.
One very generic term which is second order in derivatives is
the intercomponent current-current interaction �the Andreev-
Bashkin terms�.17 TCGL with these terms is

F = 	
n=1,2

1

2
��� + ieA��n�2 + V���n�� +

1

2
�� � A�2

+ ��1
��2

��� + ieA��1 · �� + ieA��2

+ ��1�2��− ieA��1
� · ��− ieA��2

�

− ��1�2
���− ieA��1

� · �� + ieA��2

− ��1
��2�� + ieA��1 · ��− ieA��2

�. �14�

In physical systems the coefficient � can vary in a wide
range and be either negative or positive. Let us consider
electrodynamics and knotted soliton stability in model �14�.
A different separation of variables can be introduced by de-
fining the following fields:

�̃1 � sin
�̃

2
ei�1, �̃2 � cos

�̃

2
ei�2,

u� � ��̃1,�̃2���
�̃1
�

�̃2
� � ,

�̃1 =� ��1�2�1 − 4���2�2�
�1 − 4���2�2���1�2 + �1 − 4���1�2���2�2

ei�1,

�̃2 =� ��2�2�1 − 4���1�2�
�1 − 4���2�2���1�2 + �1 − 4���1�2���2�2

ei�2,

C̃ = � i

2
��̃1 � �̃1

� − �̃1
� � �̃1 + �̃2 � �̃2

� − �̃2
� � �̃2� + eA ,

�̃2 � �1 − 4���2�2���1�2 + �1 − 4���1�2���2�2. �15�

Let us, as in the previous example, consider the regime
where one can neglect density fluctuations except the relative

density fluctuations described by �̃ �that is, we will be work-
ing with the O�3� field u� coupled to a massive vector field

C̃�. Then the model can be rewritten as

F �
�̃2

8
��u� �2 +

�̃2

2
C̃2 +

1

2e2�� � C̃ +
1

4
�kiju� · �iu� � � ju�2

+ ��̃4 ��̃2 � �̃1
� + �̃1

� � �̃2�2 + ��̃2 � �̃1 − �̃1 � �̃2�2

�1 − 4���1�2��1 − 4���2�2�
. �16�

From here it follows that model �14� can be represented as

model �7� with a renormalized characteristic length scale 
̃
�1 / �e�̃� and the additional term �the last term in Eq. �16��.
This term plays a crucial role, namely, it breaks the single-
parameter character of TCGL model �2�. This follows from
the following identity:

�̃2

8
��u� �2 + ��̃4 ��̃2 � �̃1

� + �̃1
� � �̃2�2 + ��̃2 � �̃1 − �̃1 � �̃2�2

�1 − 4���1�2��1 − 4���2�2�

=
�̃2

8
����̃�2 + sin2 �̃����1 − �2��2�

+
��̃4

2�1 − 4���1�2��1 − 4���2�2�

�� 1 + cos2 �̃

2
���̃�2 + sin2 �̃����1 − �2��2� . �17�

For ��0 the second term diminishes the energy coming
from the term �̃2

8 ��u� �2. For this reason the second-order de-
rivative terms are balanced by the fourth-order term
���kiju� ·�iu� �� ju� �2 at a larger texture size �relative to the
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scale 
̃ associated with the field C̃�. Thus model �14� has a
tunable disparity of the characteristic lengths for u� and C̃.
Therefore for a large enough negative � a knotted soliton in
model �14� should be stabilized at the length scale much
larger than 
̃ and thus approach the properties of the knotted
solitons in model �1�.

In conclusion, normally the essence of electrodynamics of
a superconductor is understood as the fact that the phase field
and vector potential combine to produce a massive vector
field which then describes the electrodynamics of the system.
In this work the electrodynamics of a two-component super-
conductor is considered and it is shown that a two-
component superconductor not only has distinct electrody-
namics manifested in the generation of a Faddeev term along
with a massive vector field, but also that there are regimes
where the electrodynamics is dominated by this term. There
is a crossover to smaller length scales where effectively the
electrodynamics does not feature the contribution in the form
of the Faddeev term. Therefore the knotted solitons in the
TCGL model can be �especially for large Hopf charges� a
local minimum in the energy for a given Hopf charge �in
contrast to a global minimum in the case of model �1��. In
the second part of the paper I showed that a more generic
TCGL model with physically relevant mixed gradient terms
possesses two characteristic length scales. This makes the

potential barrier for knotted solitons tunable. Such vortex
loops, which have a potential barrier against shrinkage,
should lead to an entirely different quench reaction, super-
fluid turbulence, and physics of thermal fluctuations. The re-
sults may be relevant for a variety of physical systems where
a two-component Ginzburg-Landau model is realized rang-
ing from electronic multicomponent superconductors to the
projected mixtures of protonic and electronic condensates in
liquid metallic hydrogen.2 If in the models such as Eq. �2�
the knotted solitons, being a local minimum of the energy
functional, have energy proportional to Q3/4 like their kin in
the Faddeev model, then these defects, if, e.g., induced by
fluctuations will have a tendency to pile up. Such a behavior
may be relevant for understanding the recent observations in
numerical simulations of discontinuous phase transitions in
SU�2� superconductors.6 In connection with applicability to
physical systems, it should also be noted that in principle it is
not necessary to have the exact SU�2� symmetry for the re-
alization of the physics discussed above. Because a knotted
soliton is a closed loop, it does not produce any phase wind-
ings at infinity; therefore an effective potential which breaks
SU�2� symmetry to U�1��U�1� �or even softly breaks it to
U�1�� introduces only a finite-energy penalty for a knotted
soliton and does not necessarily destroy it.
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